The temporally regulated transcription factor sel-7 controls developmental timing in C. elegans.

نویسندگان

  • Dan Xia
  • Xinxin Huang
  • Hong Zhang
چکیده

The temporal sequence of cell division and differentiation is explicitly controlled for succession and synchrony of developmental events. In this study we describe how the Caenorhabditis elegans gene sel-7 specifies the L3 stage-specific fate of seam cells, which adopt temporal specificities at each of four larval stages. Loss of function of sel-7 causes reiteration of the L2 stage fate at the L3 stage. sel-7 is involved in regulating the temporal expression pattern of hbl-1, which is a key factor in specifying the L2/L3 progression. We also show that sel-7 functions redundantly with other retarded heterochronic genes, including lin-46, daf-12 and the let-7 family miRNAs, in preventing adoption of the L2 fate at later stages. Expression of sel-7 in seam cells is temporally regulated through an evolutionarily conserved regulatory element located in intron 4 of sel-7. We further demonstrate that reiteration of the L2 proliferative seam cell division at the L3 stage in sel-7 mutants requires activity of the transcriptional mediator complex. Our study reveals that sel-7 functions as a novel heterochronic gene in controlling temporal cell identities and also demonstrates a role of the transcriptional mediator complex in integrating temporal information to specify seam cell division patterns in C. elegans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter.

MicroRNAs (miRNAs) are a large family of small regulatory RNAs that are poorly understood. The let-7 miRNA regulates the timing of the developmental switch from larval to adult cell fates during Caenorhabditis elegans development. Expression of let-7 RNA is temporally regulated, with robust expression in the fourth larval and adult stages. Here, we show that, like let-7 RNA, a transcriptional f...

متن کامل

A microRNA program in the C. elegans hypodermis couples to intestinal mTORC2/PQM-1 signaling to modulate fat transport.

Animals integrate metabolic, developmental, and environmental information before committing key resources to reproduction. In Caenorhabditis elegans, adult animals transport fat from intestinal cells to the germline to promote reproduction. We identified a microRNA (miRNA)-regulated developmental timing pathway that functions in the hypodermis to nonautonomously coordinate the mobilization of i...

متن کامل

The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs.

Temporal control of development is an important aspect of pattern formation that awaits complete molecular analysis. We identified lin-57 as a member of the C. elegans heterochronic gene pathway, which ensures that postembryonic developmental events are appropriately timed. Loss of lin-57 function causes the hypodermis to terminally differentiate and acquire adult character prematurely. lin-57 ...

متن کامل

The zinc-finger protein SEA-2 regulates larval developmental timing and adult lifespan in C. elegans.

Like other biological processes, aging is regulated by genetic pathways. However, it remains largely unknown whether aging is determined by an innate programmed timing mechanism and, if so, how this timer is linked to the mechanisms that control developmental timing. Here, we demonstrate that sea-2, which encodes a zinc-finger protein, controls developmental timing in C. elegans larvae by regul...

متن کامل

SKR-1, a homolog of Skp1 and a member of the SCF(SEL-10) complex, regulates sex-determination and LIN-12/Notch signaling in C. elegans.

Sex-determination in Caenorhabditis elegans requires regulation of gene transcription and protein activity and stability. sel-10 encodes a WD40-repeat-containing F-box protein that likely mediates the ubiquitin-mediated degradation of important sex-determination factors. Loss of sel-10 results in a mild masculinization of hermaphrodites, whereas dominant alleles of sel-10, such as sel-10(n1074)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental biology

دوره 332 2  شماره 

صفحات  -

تاریخ انتشار 2009